

High-power 2µm-wavelength fiber lasers

Tino Eidam

Visit us @ Booth A3.327

Active Fiber Systems GmbH

Provider of laser sources

Yb-doped, F-CPA, Oscillators & MOPA

Provider of complex systems

+ Coherent combining, Tm-doped (2μm), HHG (XUV), MIR, OPA

Provider of scientific beamlines & industrial solutions & medical devices

Scientific market

Industrial market

AFS core technologies

High harmonic generation

6mJ, 600W, 35fs, 1030nm (commercial)
1mJ, 100W, 6fs, 1030nm, CEP-stable* (commercial)

*Hädrich, et al. Opt. Lett. 47 (2022).

1.3 mJ, 130W, <11fs, 1900nm

*Wang, et al. Opt. Lett. 48 (2023)

Post compression

Semiconductor Processing

Secondary sources

 $^{\sim}10^{18} \text{ W/cm}^{2}$

Electron Acceleration
~10¹⁸ W/cm²

Incoming laser Plasma protons

Proton Acceleration

Neutron Generation
~10¹⁸ W/cm²

Hydro-oarbon Layer Sprayed D_id Catcher (LiF or CO)

Ultrafast Tm-doped fiber lasers (TDFL)

Different signal-core doping

Properties of Tm-doped fuses silica:

- Broad amplification bandwidth (<100 fs)
- Large quantum-defect (QD) when pumping at 790nm
 - → Typically strong QD-heating
 - \rightarrow Cross-relaxation allows for up to >70% efficiency¹

[1] S. D. Jackson and S. Mossman, "Efficiency dependence on the Tm3+ and Al3+ concentrations for Tm3+-doped silica double-clad fiber lasers.," Appl. Opt. 42, 2702–2707 (2003).

Challenges

Atmospheric water-vapor absorption

- Overlap of absorption lines with gain bandwidth of Tm-doped fused silica
- → spatial and temporal effects¹
- → enhanced impact of nonlinearity (e.g. SPM)

[1] M. Gebhardt, C. Gaida et al., "Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses," Opt. Express 23, 13776 (2015).

Challenges

Impact of water-vapor absoprtion¹ in the spatial domain

- Tunable cw-laser, wavelength sweep at 25W output power
- Beam image after 1m free-space propagation distance

[1] M. Gebhardt, C. Gaida et al., "Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses," Opt. Express 23, 13776 (2015).

Challenges

Atmospheric water-vapor absorption

- Overlap of absorption lines with gain bandwidth of Tm-doped fused silica
- → spatial and temporal effects¹
- → enhanced impact of nonlinearity (e.g. SPM)

Vacuum not required for wavelength range >1950nm

[1] M. Gebhardt, C. Gaida et al., "Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses," Opt. Express 23, 13776 (2015).

Product platforms: Thulium

• Coherent-combining-based & highly customizable. Capable of world-record power/energy for ultrafast sources

1900nm | 2mJ | 200W | 150fs

- Unprecedented commercial specs at 2µm central wavelength
- Suitable for scientific environments

1980nm | 100μJ | 15W | 400fs

- Compact & affordable
- Industrial-grade reliability

Product platforms: Thulium

• Coherent-combining-based & highly customizable. Capable of world-record power/energy for ultrafast sources

1900nm | 2mJ | 200W | 150fs

- Unprecedented commercial specs at 2μm central wavelength
- Suitable for scientific environments

1980nm | 100μJ | 15W | 400fs

- Compact & affordable
- Industrial-grade reliability

Ultrafast TDFL for research (1. generation)

4-channel Tm-based system

- >120W average power long-term stable
- <5µrad beam-pointing stability (8h)
- >200µJ, <150fs pulses
- 1950nm center wavelength

Product platforms: Thulium

• Coherent-combining-based & highly customizable. Capable of world-record power/energy for ultrafast sources

1950nm | 2mJ | 200W | 150fs

- Unprecedented commercial specs at 2μm central wavelength
- Suitable for scientific environments

1980nm | 100μJ | 15W | 400fs

- Compact & affordable
- Industrial-grade reliability

Modular design

Supply units

Water-water Chiller

Optical engine + laser control

Oscillator

Frontend

Main Amplifier

Isolator and Acousto-optic modulator

Pulse Compressor

All-fiber Free-space

Main-amp module

High-power fiber-amplifier (>40W)

Tm-doped photonic crystal fiber

- Advanced cooling concept
 - → high efficiency of >50% (cross-relaxation)
 - → excellent long-term stability
- >120W and diffraction-limited beam quality

Free-space module

Isolation Free-space isolator

- 40W average power tested
- Static thermal lens
- >25dB isolation

- 40W average power tested
- No thermal beam degradation

Free-space module

Treacy Compressor

Reflective dielectric gratings

>90% compressor efficiency

Industrial grade 2µm solution

Lasers beyond the state of the art

Active Fiber Systems GmbH

Visit us @ Booth A3.327